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Abstract. We consider the weighted median problem for a given set of data and
analyze its main properties. As an illustration, an efficient method for searching for a
weighted Least Absolute Deviations (LAD)-line is given, which is used as the basis for
solving various linear and nonlinear LAD-problems occurring in applications. Our method
is illustrated by an example of hourly natural gas consumption forecast.
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1 Introduction

The problems of estimating Least Absolute Deviations (LAD)-parameters for a linear re-
gression, determining a LAD-hyperplane, and searching for a LAD-solution of an overde-
termined system of linear equations, are all equivalent, and solving them boils down
essentially to solving the weighted median problem (Bartels et al., 1978; Bazaraa et al.,
2006; Cadzow, 2002; Castillo et al., 2008; Schobel, 2003; Scholz, 1978).

These problems arise frequently in various branches of applied research, i.e. robotics,
neural networks, signal and image processing, etc. (Cupec et al., 2009; Hodge and Austin,
2004; Koch, 1996; Rousseeuw and Leroy, 2003; Schobel, 1999; Wang and Peterson, 2008).
Particularly, solving the weighted median problem is used in many methods for outlier
detection, for example in fraud detection, loan application processing, intrusion detection,
activity monitoring, network performance, fault diagnosis, structural defect detection,
satellite image analysis, detection of novelties in images, motion segmentation, time-series
monitoring, medical condition monitoring, pharmaceutical research, detection of novelties
in text, detection of unexpected entries in databases, detection of mislabeled data in a
training data set, etc. (see Hodge and Austin (2004), Rousseeuw and Leroy (2003)).

The LAD principle is attributed to Josip Rudjer Boskovié¢ (1711-1787), Croatian sci-
entist (mathematician, physicist, astronomer and philosopher) born in Dubrovnik (see
e.g. Dodge (1987), Schobel (2003)). Due to today’s powerful computers, this principle
has become quite popular and raised a great interest, as can be seen in numerous journal
papers as well as at various international conferences. A series of such conferences is
dedicated to J.R. Boskovi¢ (Dodge, 1987).

This principle was also applied by the French mathematician and astronomer marquis
Pierre-Simon de Laplace (1749-1827) in five volumes of his comprehensive work Mécanique
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Céleste (1798-1825), which was translated into English in 1829 by N.Bewditch?, and
which inter alia analyzes the form of the Earth’s ellipsoid of rotation.

In this paper we consider the weighted median problem, analyze its most important
properties, and illustrate it by showing an efficient method for searching for a weighted
LAD-line. Solving all previously mentioned problems is based on this method.

2 The weighted median problem

Let (w;, ), i = 1,...,m, m > 1, be some given data, where y; are real numbers and
w; > 0 are the corresponding data weights. Throughout this paper we will use y and w to
denote the m-tuples (y1,...,Ym) and (wy, ..., wy,,), respectively. The function f: R — R

fla) = iw i — o, 1)

is convex and attains its global minimum. The set Med(w, y) of all global minimizers (i.e.
points of global minima) of the function f is convex, and as the following lemma shows
(Sabo and Scitovski, 2008), it can be a one-point set, in which case it is one of the y;’s,
or a segment between two subsequent data. Any element of the set Med(w, y) is called a
weighted median of the data and we denote any of these by med(w,y).

Lemma 1. Let (w;,y;), i € I ={1,...,m}, m > 2, be some data, where y; < ys < ... <
Ym are real numbers and w; > 0 are the corresponding data weights. Then there exists a
p € I, such that y, € Med(w,y). Therefore, by denoting

J::{VEI:Zwigw},
i=1 2
where W := 37", w;, the following holds:

(a) if J =0, then Med(w,y) = {y1};

(b) if J # 0 and vy := max J, then

(1) if 32 wi <, then Med(w, y) = {yup 41}/
(“’) Zf Z?il w; = %7 then Med<w7 y) = [yllov yl/0+1]'

Note that, if especially m =1 or y; = ... = y,,, then Med(w,y) = {y1}.

The following two corollaries are direct consequences of Lemma 1. The first one
describes a special case of unweighted data, or, equivalently, the case when all weights
are the same (Sabo and Scitovski, 2008). In this case, the set of global minimizers will be
denoted by Med(y), and any of its elements is called median of the data and denoted by
med(y).

Corollary 1. Let y1 < yp < -+ < y,, be some real numbers. Then there exists a
pe{l,....,m}, such that y, € Med(y). Consequently,

2 Available at http://www.archive.org/details/mcaniquecles02laplrich
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(1) if m is odd (m =2k + 1), then Med(y) = {yg+1};
(13) if m is even (m = 2k), then Med(y) = [yk, Yrr1]-

The second corollary describes the important pseudo-halving property (Schobel, 1999,
2003).

Corollary 2. Let (w;,y;), i =1,...,m, m > 1, be some data, where y; are real numbers
and w; > 0 are the corresponding data weights. Then for all u € Med(w, y) the following
so-called pseudo-halving property, holds:

4 )

Zwigvgand Zwig

Y <u Yi>u

where W = 37" w;.

According to Lemma 1 and Corollary 2, it can be said that the weighted data median
is any number u € R for which the pseudo-halving property (2) holds.

Let us mention another important property of the weighted median of the data, which
follows directly from Corollary 2.

Let y = (y1,...,Ym) be an m—tuple of real numbers y; € [a,b], let w = (w1, ..., wy),
w; > 0, be the corresponding weights, and let ¢: [a,b] — R be a strictly monotone
function and « > 0. Then from Corollary 2 it readily follows that

Med(aw, (¢(y1), -, d(ym))) = d(Med(aw, y)) = ¢(Med(w, y)), (3)

and especially if the function ¢ is an affine function,
Med(aw, By + vy e) = F Med(w, y) + 7, (4)

for all 3,7 € R, where e = (1,...,1).3

Note also that in case the number of data is large, calculation of the weighted median of
the data may require a lot of computing time (Cupec et al., 2009). Several fast algorithms
can be found in Gurwitz (1990). In numerical examples at the end of this paper, the
weighted median of the data is calculated by a modification of Algorithm 1 proposed
in Gurwitz (1990).

3 An efficient method for searching a weighted LAD-
line

To illustrate the median application, which is the basis for all aforementioned applications,
we give an efficient algorithm for determining a weighted LAD-line. Let A = {T; =
(xi,y;) i =1,...,m} be a set of points in the plane with corresponding weights w; > 0.

3For subsets A, B C R and real numbers a, 3 and v, we denote a4 + 3B := {aa+3b:a € A, b € B}
and A+~v:={a+~v:a€ A}



We are looking for a weighted LAD-line, i.e., we have to find the optimal parameters
a*,b* € R of the function f(x;a,b) = ax + b, such that

G(a*,b*) = (aan)le% G(a,b), where G(a,b) = sz ly; — ax; — b). (5)

The functional G is convex and it always attains its global minimum on R2.

The algorithm we are going to construct is based on the fact that there always exists
a weighted LAD-line passing through at least two points of A (see e.g. Bazaraa et al.
(2006), Sabo and Scitovski (2008)). We first choose an initial point. It can be practically
shown that choosing the centroid of the data set A is a good choice for the initial point
(see e.g. Cupec et al. (2009)).

Next we choose a point in A in such a way that the line passing through these two
points has the property that the sum over all points in A of absolute deviations of these
points to the line is minimal. For this purpose the following lemma is used.

Lemma 2. Let A = {T; = (z;,y;) € R* : i € I}, where [ = {1,...,m}, m > 2, be a
set of points in the plane such that v1 < --- < x,, and v1 < x,,, and let w; > 0 be the
corresponding weights.

Then for arbitrary T, = (x,,y,) € R?, there exists a T, = (z,,y,) € A, x, # x,,, such
that for a* = 2=+

é(m Tu) > é(a*§ Tu)y Va €R, (6)

where .
TN) = Zwi lyi — a(x; — x#) - yu|' (7)

=1

Proof. Let Iy :={i €[ :x;=ux,}. Then

-y
Tu)zzwiwi_yu‘""zwi‘@ $u| b —al,
iclo i€\ Io Li = Ty
and using Lemma 1 the assertion is proved. O]

Denote by A the algorithm which to any point T}, = (z,,, y,) € R? associates the point
T, € {(z;,y;)) € A : z; # x,} and the slope a* = i’”_y” € R as in Lemma 2. If there
is more than one point that satisfies inequality (6), A should return the point and slope
associated with the smallest index greater than pu or, if all indices are smaller, the one
with the smallest index. We write this as A(7),) = {a*,1,}.

Generally, there may be an infinite number of weighted LAD-lines and not all of them
must pass through at least two data points. Our goal is to construct an algorithm that
will find a weighted LAD-line passing through at least two data points.

Now, based on a successive application of algorithm A and according to Lemma 2,
we are going to define the Weighted Two Points Algorithm (WTP) for searching for a
weighted LAD-line. In some iteration, the WTP algorithm starts from point 7, € A and
by applying algorithm A it gives a slope a* and a new point T, € A.
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If in the next iteration, starting from point 7, € A, we again obtain point 7}, (and
naturally the same slope a*), then

I={iel:a(xi—,)+y =y} ={pv}

and the line z — y, + a*(x — z,,) is a weighted LAD-line. This assertion will be proved
in Theorem 1(i).

If I, \ {p,v} # 0, then the WTP algorithm will test points with indices from the set
I, \ {p,v}. That case is analyzed in Theorem 1(ii).

The Theorem 1 shows that parameters obtained by the WTP algoritm are best LAD-
parameters.

WTP Algorithm*

Step 1: Input the set of points T; = (x;,v;), i € I = {1,...,m}, m > 2, and
the corresponding data weights w; > 0;
Determine the centroid of the data T, = (z,,y,), and
define the set Iy = {1 € I : x; =z, };

Step 2: According to Lemma 2, determine 7}, and a; such that A(T},) = {a1,T}, }, where

W el \ Iy;
Put by = —a1xp, — yp;
Set j = 1;

Step 3: Define a new set Io = {i € [ : 2; = x;,}, and
according to Lemma 2, determine 7T;,,, and a;,; such that A(T};) = {a;41,T;,,, },
where 4,41 € I\ Ip;
Put bjy1 = —ajizi; — yigss

Step 4: If ij4q ¢ {i1,42,...,4;}, set j = j+ 1 and go to Step 3;
Else, return (a;;1,b;41) and STOP.

Theorem 1. Let A = {T; = (x;,y;) € R? :i € I}, where I = {1,...,m}, m > 2, be a set
of points in the plane such that x1 < --- < x,, and x1 < T,,, let w; > 0 be the corresponding
weights, and let a; and a3, be such that A(T),) = {a},T,} and A(T,) = {a},T;}. Denote
I, ={iel:y, +as(x;—z,) =vy;}. Then

(¢) if I, = {p,v}, then T, = T, and af = a5 =: a*, and x — y, + a*(x — x,) is a
weighted LAD-line;

(@) if L \{p,v} # 0 and for allr € I, \{p, v}, A(T,) = {a3, T} with a3 = 2=, where

G(a3,T,) = G(a},T,), then x — vy, + aj(x — x,) is a weighted LAD-line.

4All evaluations and illustrations were done by using Mathematica 6 on a PC (Intel Core 2 Duo, 2 GB)
and our own code available at http://www.mathos.hr/seminar/software/WIP.m



Proof. (i) Since I, = {p, v}, it is obvious that a} = a5 =: a* and T}, = T},. Therefore,
for every 1 € 1

sign(y; — y, — a*(z; — x,)) = sign(y; — v, — a*(z; — x,)) =: 0.

Since a* is a global minimizer of both convex functionals G(a; T),) and G(a;T,), the
real number 0 has to belong to their subdifferentials (see e.g. Bazaraa et al. (2006),
Ruszezynski (2006)), i.e.,

0€0G(a"T,) = > wil-11(zi—z,)— Y. woi(z —x,),

ie{p,v} i€\{p.v}
0€9G(a:T,) = > wl-11(z—z,)— >  woi(z—1z),
ie{p,v} iel\{p,v}

where [-1,1]] ={z e R: -1 <z <1}

Therefore, there exist real numbers v, v, € [—1, 1] such that

1
w,v, = > wioi(w — xp),
Tv = Tuier\fuvy
1
Wy, = ——— Z w;oi(x; — ),
Tu =T ien\{uvy
and hence
Wy Ty Uy + Wy TV, = Z W; 025,
ieN{nv}
Wy, + w,v, = Z W; 0,
ieN (v}

which means that

(0,0) € 0G(a*,b") = Z wi[—1, 1](x;, 1) — Z w;oi(x;, 1), b* =y, —a'z,.

ie{p,v} ie\{p,v}

Hence, (a*, b*) is the global minimizer of the functional G, i.e., x — y, +a*(z — x,)
is a weighted LAD-line.

(71) In case x — y,+aj(x—uwx,) is not a weighted LAD-line, there exists an r € I, \{u, v},
such that, by Lemma 2, there exist s € I'\ I, such that

G(a;T,) > G(a}; T;), ay = Ys = Ur (8)

Ts — Xy



Furthermore, using (8) and y, — a3(x, — z,) — v, = 0, we obtain

GlayT,) = > wily — as(wi — x,) =y,
=1
- Yo — Yk
= sz Yi — (SL’I Il/) — Y
i=1 Ty — Tk
- Yr — Uk
= Z Wi \Yi — ( i xr) Yr
Ty — Tk

]

In Example 1 the WTP Algorithm is illustrated on an example in which degeneration
appears (see Yan (2003)).

Example 1. Using the WTP Algorithm we search for a weighted LAD-line for data

points (x;,v;), ¢ = 1,...,7, with weights w; > 0, given below :
w; |2 1 1 1 4 2 2
z; |1 1 3 4 6 8 11
|1 2 2 2 2 2 3

The flow of the iterative process is shown in Table 1, and Fig. 1 shows the data
points and lines corresponding to the initial and the last iteration. Bigger black points
correspond to data points with larger weights.

3+ L]
2 L J *
1 [
.
1 3 4 6 8 11 1 3 4 6 8 11

Figure 1: Data points and the initial and the last iteration

4 An application to the natural gas consumption fore-
cast

Our algorithm for searching for a best LAD-line will be illustrated on the problem of
natural gas consumption forecast. We consider the data (7;,y;), ¢ = 1,...,24 x m, where
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Iteration (i) | First Point Second Point | a;  b; | G(a;,b;)
1 1,2) 3,2 0 2 4
2 (3,2) 42| 0 2 4
3 (4,2) 6,2)| 0 2 4
4 (6,2) (11,3) | 02 0.8 2.8
5 (11,3) (1,1) | 0.2 0.8 2.8
6 (1,1) (6,2) | 0.2 0.8 2.8

Table 1: lterative process WTP

7; is the temperature and y; is the consumption of natural gas per hour, during a certain
m-~day period in one part of the city of Osijek (Croatia) (see Fig. 2). We should forecast
natural gas consumption Y,,,; for the next day, assuming that in that period no large
industrial users were active.

consumption

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

~

W\ S N
m’\\ /W V\W

J\ Yd w/ temperature

Figure 2: Hourly temperature and natural gas consumption

According to Brabec et al. (2008), there exists a functional relationship between nat-
ural gas consumption and the temperature, which may be expressed by Gompertz model
function: Y (1) = e a,b,¢ > 0. Therefore, suppose that the total natural gas con-
sumption on the (m+ 1)-th day depends on the average temperature 7,, on the m-th day.
On the basis of the data (7;,Y;), i = 1,...,m, where 7; is the average temperature and
Y; is the total consumption on the ¢-th day, we determine the optimal parameters a* 07
and ¢* of the Gompertz model function (see Fig. 3).

Since occasionally some large industrial users can become active, thereby causing
outliers, we will apply the LAD-principle in such a way that the estimated parameters
are more significantly influenced by data referring to consumption on those days when
the average temperature was close to 7, (darker gray points), and less influenced by data
for days when the average temperature was significantly different from 7, (lighter gray
points). This will be achieved by minimizing the functional

m

F(a,b,c) = Zwi

=1

CT 4

Y; — e abe >0, 9)




where w; > 0 are the data-weights defined in the following way (Scitovski et al., 1998):

—u?)3, 0<u<
),withW(u)::{<1 O“)’ 2;?—1’ , (10)

where the parameter r; > 0 defines the range of influence of the i-th datum.

wizw<lﬂ-—mi

T

100000 L 120000

i 100000}
80000 i
80000
60000 I
I 60000
40000 [

I 40000 |

20000 I 20000

20 30 -10 0 10 20 30

-10 0 10

(a) Gompertz model function (b) Linear model function

Figure 3: Data points and Gompertz and linear model function

Using the optimal parameters a* 0%, and ¢ we estimate natural gas consumption on
the following (m + 1)-th day as Y (7n) = e 0™ Fig.3a shows the data (7, Y;),
i=1,...,m (m = 15), and the corresponding Gompertz model function. The forecast of
natural gas consumption for the (m+ 1)-th day, that is linked to the average temperature
Tm, is emphasized by a circle.

In practice, we are interested only in the behavior of gas consumption for the average
temperature close to 7,,, so the Gompertz model function can be approximated by a linear
model function L£(7) = o7 + 3, whose parameters «, 3 can be determined by minimizing
the functional

®(a,b,c) =Y w;|Yi — a1 — 3], (11)
i=1

where data weights w; > 0 can also be determined from (10). Hence, the problem is
reduced to the problem of determining a weighted LAD-line.

Fig. 3b shows the data and the corresponding linear model function. The forecast of
natural gas consumption for the (m + 1)-th day, that is linked to the average temperature
Tm, is emphasized by a circle.

Table 2 lists LAD parameters for the Gompertz and linear model function used to
estimate natural gas consumption on the 14-th, 16-th, and the 18-th day. Table 3 gives
a comparison of the forecast of natural gas consumption on the 14-th, 16-th, and the
18-th day, based on the Gompertz model function Y (7,,) and the corresponding linear
approximation L(7,,), with actual consumption Y,,; on these days. From the above
illustrations and the experiment performed one can conclude that, for practical purposes,
linear approximation gives an acceptable forecast.



Gompertz model function Linear model function
Day Tm a* b* c* ot 3*

14 -0.1°C | 11.56351  0.16077  0.216611 | -1924.68 88738.8
16 1.3°C' | 11.5288 0.158752  0.222853 | -2771.97 86188.4

18 2.8°C' | 11.4653 0.0853622 0.387744 | -3792.5 86005.4

Table 2: Weighted LAD parameters of the Gompertz and linear model function

Gompertz model Linear model

Day Tm Yt Y (Trm) Rel. err. V(Tm) Rel. err.
(in %) (in %)
14 —0.1°C 2.10163 x 10% | 2.09633 x 10° 0.3 2.13416 x 10° 1.5
16 1.3°C 2.04778 x 10° | 1.97234 x 106 3.7 1.98204 x 10 3.2
18 2.8°C 1.73542 x 10% | 1.76911 x 108 1.9 1.8051 x 108 4.0

Table 3: Forecast of natural gas consumption

5 Conclusion

The method for searching for a weighted LAD-line, which is given in this paper, is ge-
ometrically motivated and it includes both the nondegenerate and the degenerate case.
An efficient WTP algorithm is constructed based on the mentioned method. Thereby it
was taken into consideration that the number of data may be very large, and that the
solution should be reached in a very short period of time.

In numerous applied researches (e.g. the forecast of natural gas consumption, Brabec
et al. (2008), or the movement of robots, Cupec et al. (2009)) it is extremely important
to have such an algorithm, which always gives a solution to the fundamental problem,
reliably and in real time.

Acknowledgement. We would like to thank an anonymous referee for useful comments
and remarks, which helped us improve the paper significantly.
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